
hello@advix.com
advix.com

BITCOIN.COM ​
SECURITY ASSESSMENT ​

AND PENETRATION TESTING REPORT
March 28, 2025, Version 1.0

hello@advix.com
advix.com

Table of contents

1. Executive Summary

2. Assessment Scope and Objectives

3. Assessment Methodology

4. SDK Code Summary

5. Key Findings

5.1 Cross-Domain Misconfiguration

5.2 Information Leak via X-Powered-By Header
5.3 Protocol Violation

6. Solution Architecture Recommendations

6.1. Implement End-to-End Encrypted Cloud Backup

6.2. Distribute MPC Nodes Across Isolated Environments

6.3. Decentralize Architecture to Uphold MPC Integrity

6.4. Eliminate Server-Side Key Storage Vulnerabilities

7. Conclusion and Next Steps

8. About Us

Contact Information

9. Appendix: Full List of Findings

9.1. File: api/mpc/sign.ts

9.2. File: classes/sign.ts

9.3. File: types/mpc.ts

9.4. File: api/mpc/keygen.ts

9.5. File: classes/generate.ts

9.6. File: api/mpc/reshare.ts

9.7. Web App (dev.accounts.bitcoin.com)

10. Version history

hello@advix.com
advix.com

1. Executive Summary
Advix has completed the security assessment of the code outlined in the Assessment
Scope and Objectives section together with the penetration test.

Our findings show that the newly implemented authentication scheme provides strong
security, utilizing high-assurance authentication factors such as Google OAuth and
WebAuthn.

However, the analysis identified several deviations from true Multi-Party Computation
(MPC) protocol specifications. Some of these deviations represent intentional design
choices made to enhance user experience, while others present opportunities for
security improvements, detailed below.

The overall architecture maintains strong authentication principles while balancing
practical usability considerations.

In addition, cryptographic primitives are implemented correctly, with appropriate
consideration given to the operational modes of the underlying algorithms. The selected
cryptographic schemes are deemed secure against both current threats and potential
future attack vectors.

2. Assessment Scope and Objectives
The assessment scope included the codebase and API/web endpoints in the following
repositories:

●​ https://github.com/bitcoin-portal/mpc-sdk and related resources
●​ https://dev.accounts.bitcoin.com

The goal of the assessment was to identify security vulnerabilities, code quality issues,
and potential weaknesses in exposed endpoints.

Additional resources related to main scope:

●​ https://tradfi-web.ops.bitcoin.com
●​ https://markets-ws.api.bitcoin.com

https://github.com/bitcoin-portal/mpc-sdk
https://dev.accounts.bitcoin.com
https://tradfi-web.ops.bitcoin.com
https://markets-ws.api.bitcoin.com

hello@advix.com
advix.com

3. Assessment Methodology
Our approach is based on OWASP methodology and implies using advanced
automated tools combined with expert manual review, providing a comprehensive
assessment across all critical layers of the system.

Our assessment methodology focuses on verifying the implementation of key security
controls across critical domains to ensure comprehensive protection of systems and
data:

●​ Architecture: Reviews the design and security functions of application
components, ensuring a robust and secure architecture.

●​ Authentication: Verifies that user identity verification processes and
authenticator management follow best practices for secure authentication.

●​ Session Management: Assesses how sessions are managed, ensuring secure
handling of session creation, maintenance, and termination to prevent
unauthorized access.

●​ Access Control: Confirms the enforcement of proper restrictions on user
permissions and resource access, adhering to the principle of least privilege.

●​ Validation, Sanitization, and Encoding: Ensures proper validation and
sanitization of inputs to mitigate injection attacks and other security risks.

●​ Stored Cryptography: Verifies the effective use of encryption for protecting
sensitive data stored at rest.

●​ Error Handling and Logging: Evaluates error management practices to ensure
sensitive information is not exposed in error messages or logs.

●​ Data Protection: Confirms that sensitive information is securely protected both at
rest and in transit, with appropriate encryption and safeguards.

●​ Communication: Ensures secure communication protocols are in place,
maintaining data confidentiality and integrity during transmission.

●​ Business Logic: Reviews business workflows to ensure they cannot be
manipulated or bypassed by attackers.

●​ API and Web Service Security: Verifies proper security measures for APIs and
web services, focusing on authentication, authorization, and encryption.

●​ Configuration: Assesses system configuration to ensure secure default settings
and hardening measures are in place to reduce vulnerabilities.

This approach ensures that all critical areas are thoroughly evaluated to maintain a high
standard of security.

hello@advix.com
advix.com

4. SDK Code Summary
The reviewed SDK acts primarily as a React + TypeScript wrapper around the
closed-source @sodot/sodot-web-sdk library. It exposes selected functionality from the
upstream SDK to the application layer but contains limited custom business logic.

While the codebase includes an extensive number of test files, effective test coverage is
inconsistent. Overall coverage is estimated at 58%, with critical areas—such as backup
and restore workflows—lacking meaningful tests. Notably, files like mpc-sdk.ts and
those under src/api/gdrive/ currently exhibit 0% coverage.

Key observations:

●​ Cryptographic primitives (e.g., AES-GCM, base64url) appear to be used correctly.
However, the rationale for using a custom base64url implementation, instead of
standard libraries, is unclear.

●​ Certain protocol elements, such as BIP-340 support, remain unimplemented,
although marked as TODOs in the code.

●​ ESLint is configured but not formally declared as a dev dependency. Moreover,
the current linting ruleset is permissive and lacks enforcement of common style
conventions, which may hinder maintainability.

No direct vulnerabilities or insecure coding patterns were identified within the SDK
wrapper. However, as the underlying @sodot/sodot-web-sdk library is closed-source, its
cryptographic correctness and protocol adherence could not be independently verified.
Integration patterns suggest reliance on upstream abstractions and documentation.

hello@advix.com
advix.com

5. Key Findings
The assessment surfaced a series of misconfigurations, protocol handling weaknesses,
and potential abuse vectors. Below is a high-level summary of the most critical issues.

While no remote code execution or severe authentication bypass was identified, the
issues below weaken the system’s security boundary and should be prioritized
accordingly.

Severity classification:

●​ Critical: Exploitable vulnerabilities leading to full system compromise, data
breaches, or remote code execution. Immediate remediation required.

●​ High: Serious security flaws allowing unauthorized access, privilege escalation, or
major data leaks. Requires prompt attention

●​ Medium: Issues that could be exploited under certain conditions, such as security
misconfigurations or weak access controls. Should be addressed in a reasonable
timeframe.

●​ Low: Minor weaknesses with limited impact, often requiring other vulnerabilities
to be exploitable. Address as part of routine maintenance.

A complete list is provided in the Appendix.

5.1 Cross-Domain Misconfiguration

Severity Medium

Description Server response contains header Access-Control-Allow-Origin: *,
that allows requests from any third party domains.

1.​ Data Exposure: Any website can make requests to your API and
access the response without additional protection

2.​ CSRF & XSS: If combined with authentication, attackers can exploit
users' sessions

3.​ API Abuse: Unrestricted access may allow automated scraping or
abuse.

Mitigation ●​ Configure Access-Control-Allow-Origin to more restricted set
of valid domains​
- or -

●​ Remove this header completely, let the browser enforce Same
Origin policy by default.

hello@advix.com
advix.com

Evidence of
Vulnerability

5.2 Information Leak via X-Powered-By Header

Severity Medium

Description The web application discloses backend technology details via response
headers, which may assist adversaries in fingerprinting the underlying
stack and tailoring targeted attacks. For example, a recent vulnerability
in Next.js (CVE-2025-29927) allowed unauthorized requests to bypass
critical authorization checks by exploiting specific framework
behaviors.

Mitigation Suppress this header in server response completely.

Evidence of
Vulnerability

5.3 Protocol Violation

Severity Medium

Description Client-controlled threshold could bypass MPC security, violating
protocol.

Mitigation Validate threshold to ensure it is ≤ numParties before key generation

https://nextjs.org/blog/cve-2025-29927

hello@advix.com
advix.com

6. Solution Architecture Recommendations
To improve the platform’s long-term security posture and align with the intended
guarantees of MPC, the following architectural changes are recommended.

6.1. Implement End-to-End Encrypted Cloud Backup

All cloud backup workflows should use strong client-side encryption with locally
generated keys. This ensures data confidentiality even if the underlying cloud
infrastructure is compromised.

Context: Recent industry vulnerabilities underscore the criticality of proper encryption in
distributed key management:

●​ GG18 and GG20 Paillier Key Vulnerability - Fireblocks
●​ Bitforge Vulnerability - SafeHeron
●​ Breaking the Shared Key in Threshold Signature Schemes - Trail of Bits

6.2. Distribute MPC Nodes Across Isolated Environments

1.​ To strengthen the Multi-Party Computation (MPC) security model, deploy MPC
nodes across independent and isolated environments, such as separate cloud
providers or secure enclaves. This distribution minimizes the risk of coordinated
attacks and enhances system resilience.

2.​ Where appropriate, integrate cloud-based Hardware Security Modules (HSMs) like
AWS Nitro Enclaves to protect server-side key shares using hardware-backed
isolation.

6.3. Decentralize Architecture to Uphold MPC Integrity

Revise the system architecture to eliminate the centralization of critical infrastructure
components — such as the server, relay, and authentication logic — which inherently
conflict with the trust distribution principles of MPC.

Adopt a decentralized model where:

●​ No single component retains control over encrypted key shares or user backups.
●​ The relay server operates as a passive transport layer and does not have visibility

into sensitive MPC communications during key operations.

https://www.fireblocks.com/blog/gg18-and-gg20-paillier-key-vulnerability-technical-report/
https://safeheron.com/blog/bitforge-vulnerability/
https://blog.trailofbits.com/2024/02/20/breaking-the-shared-key-in-threshold-signature-schemes/

hello@advix.com
advix.com

7. Conclusion and Next Steps
The assessment confirms that Bitcoin.com’s authentication framework and
cryptographic primitives are generally well-implemented. However, certain design
decisions and configuration gaps reduce the effectiveness of the MPC protocol and
weaken the system’s perimeter defenses.

We recommend the following immediate next steps:

1.​ Short-term (0–2 weeks)
a.​ Address misconfigurations in headers (CSP, CORS, STS, X-Powered-By):

i.​ 5.1 Cross-Domain Misconfiguration.
ii.​ 5.2 Information Leak via X-Powered-By Header.

2.​ Mid-term (2–4 weeks)
a.​ Harden testing practices for coverage of cryptographic and backup logic.

3.​ Long-term (1–2 months)
a.​ Evaluate the feasibility of moving toward a more resilient and decentralized

MPC architecture.
b.​ In the event of substantial architecture changes, a follow-up audit should

be conducted to validate the applied fixes.

Advix remains available to support the implementation of these recommendations or to
provide validation upon completion.

hello@advix.com
advix.com

8. About Us
Advix is a boutique technology consulting firm specializing in both traditional and
emerging fintech. Applying our deep cybersecurity expertise, we help banks, exchanges,
and web3 startups improve their security posture.

The present assessment and penetration testing were conducted by our advisors:

●​ Yaroslav Rabovolyuk, Cybersecurity Advisor – ex-CISO VK Group, 200+ projects in
offensive cybersecurity.

●​ Dmitry Yanchenko, Cybersecurity Advisor – 20+ years in defensive cybersecurity,
PCI DSS audits, NIST, SOC.

Contact Information
Should you have any questions regarding this report, please contact ​
Yaroslav Rabovolyuk: y.rabovolyuk@advix.com, or ​
Nail Iangazov: n.iangazov@advix.com

Sergey Kubasov
CEO, Advix FZCO
Dubai Silicon Oasis,
DDP, Building A1
United Arab Emirates

mailto:y.rabovolyuk@advix.com
mailto:n.iangazov@advix.com

hello@advix.com
advix.com

9. Appendix: Full List of Findings

9.1. File: api/mpc/sign.ts

Issue Risk Solution Status

1 Party coordination
issues: num_parties:
numParties //
Client-controlled
value

Severity: High
A malicious client could
bypass threshold-based
security guarantees by
setting num_parties=1,
effectively disabling MPC
protections.

Enforce server-side
validation of num_parties
to ensure it meets the
minimum threshold
requirements for secure
MPC execution.

Mitigated

2 Batch signing:
sign_requests:
signRequests.map(..
.) // Atomic
handling

Severity: High
Absence of per-request
nonce binding may allow
attackers to splice
elements from different
batches, compromising
integrity and traceability.

Bind a unique nonce to
each signing request and
enforce atomic
processing of individual
elements within the
batch.

Mitigated

9.2. File: classes/sign.ts

Issue Risk Solution Status

1 Relay server trust:
new
window.sodot.Ecdsa
(this.relayUrl) //
Trusted relay?

Severity: Medium
A malicious relay server,
while unable to see secret
data, could still disrupt
the protocol’s behavior or
flow.

Validate and explicitly
trust relay servers. Use
secure connections and
introduce verification
mechanisms to prevent
unauthorized interference.

Mitigated

2 Share persistence:
const secret =
await
aesGcm.decrypt(...
) // Clear after
use?

Severity: Medium
Decrypted shares briefly
remain in memory,
introducing a potential
window for in-memory
attacks or data leaks.

Ensure decrypted data is
immediately cleared from
memory after use to
reduce exposure.

Mitigated

hello@advix.com
advix.com

9.3. File: types/mpc.ts

Issue Risk Solution Status

1 Threshold protocol
gaps: export type
InitKeygenCreationR
esponse = {
threshold: number
};

Severity: High
The server may override
the client’s threshold
preference, potentially
leading to incorrect or
insecure key generation.

Include the threshold field
in the keygen response
and implement client-side
validation to ensure
consistency.

Mitigated

2 Multi-Party
coordination gaps: ​
export type
MpcSignResponse = {
room_id: string; //
No participant list
};

Severity: High
Clients cannot verify the
identities of other
participants in the MPC
session, which may
enable
man-in-the-middle
(MITM) attacks.

Introduce participant
verification and ensure
secure identification
mechanisms are
integrated into protocol
flows.

Mitigated

3 Authentication
bypass vectors: ​
type
PublicKeyCredential
RequestOptionsJSON
= { // No
userVerification
requirement // No
attestation
conveyance };

Severity: Low
Weak authentication
may occur if WebAuthn
settings lack essential
security flags, such as
userVerification or
attestation.

Enforce inclusion of
userVerification and
attestationConveyance
in WebAuthn typings to
ensure robust
authentication.

Mitigated

hello@advix.com
advix.com

9.4. File: api/mpc/keygen.ts

Issue Risk Solution Status

1 Threshold validation
vulnerability: ​
const numParties =
3; const threshold
= 5; // Could be >
numParties

Severity: High
A client-controlled
threshold greater than
numParties may
undermine the core
guarantees of threshold
cryptography,
potentially allowing
invalid or insecure key
operations.

Implement server-side
validation to ensure
threshold ≤ numParties,
enforcing secure and
consistent configuration.

Mitigated

2 Keygen ID trust issue:
createKeygen({
keygenIds:
["malicious-id"] })
// No validation

Severity: High
An attacker may forge or
manipulate keygenId
values, potentially
undermining the
integrity of the key
generation workflow.

Introduce strict validation
by implementing a
predefined allowlist of
authorized keygenId values
and enforce cryptographic
verification of their
authenticity.

Mitigated

hello@advix.com
advix.com

9.5. File: classes/generate.ts

Issue Risk Solution Status

1 Protocol violation:
signer.keygen(...,
numParties,
threshold, ...); //
Client controls
threshold

Severity: Medium
True MPC requires key
shares to be generated
independently by
different parties

Ensure that key shares are
generated independently
by multiple parties

Pending

2 Threshold parameter
mismanagement:
signer.keygen(...,
numParties,
threshold, ...); //
Server doesn't
validate threshold
<= numParties

Severity: High
Client-controlled
threshold could bypass
MPC security, violating
protocol

Validate threshold to
ensure it is ≤ numParties
before key generation

Mitigated

3 Keygen ID poisoning:
[backupKey.keygenId
,
serverKeygenDetails
.keygen_id] //
Trusting
client-generated
IDs

Severity: High
Malicious client could
inject invalid keygen IDs,
compromising the
security

Validate keygen IDs to
prevent poisoning and
enforce a secure ID
generation process

Mitigated

hello@advix.com
advix.com

9.6. File: api/mpc/reshare.ts

Issue Risk Solution Status

1 Threshold
reconfiguration
vulnerability:
new_threshold:
newThreshold // No
validation

Severity: High
An attacker could set the
threshold below a secure
minimum, potentially
enabling a single party to
reconstruct the secret.

Enforce server-side
validation to ensure the
new threshold is not lower
than the minimum
required for safe operation.

Mitigated

2 Keygen ID trust chain
break: ​
keygen_ids:
keygenIds // Could
include malicious
IDs

Severity: High
Attackers could supply
malicious or revoked
keygenIds, undermining
the integrity of the share
generation process.

Implement validation
mechanisms to verify the
authenticity of each
keygenId before accepting
it.

Mitigated

3 Reshare initiation
spoofing:
initReshareExisting
Party({ walletId
}); // No proof of
existing share
ownership

Severity: High
Any user could trigger
resharing for a wallet they
do not own, leading to
potential full system
compromise.

Add authentication checks
to verify the initiator holds a
valid share before allowing
resharing actions.

Mitigated

hello@advix.com
advix.com

9.7. Web App (dev.accounts.bitcoin.com)

Issue Risk Solution Status

1 Content Security
Policy (CSP) is not
implemented

Severity: Medium
The application does not
implement a Content
Security Policy, which
helps prevent Cross-Site
Scripting (XSS) and data
injection attacks.

Implement CSP by adding a
Content-Security-Policy
header. Define allowed origins
for each resource type to
restrict external scripts, styles,
and other assets.

Pending

2 Cross-domain
misconfiguration

Severity: Medium
The server allows requests
from any third-party
domain, exposing the
application to potential
data leakage and
cross-origin abuse.

Restrict the
Access-Control-Allow-Origin
header to a specific list of
trusted domains, or remove it
entirely to rely on the
browser’s default same-origin
policy.

Pending

3 Information leak via
X-Powered-By
header

Severity: Medium
The X-Powered-By header
reveals backend
technologies, helping
attackers identify
frameworks and tailor
attacks accordingly.

Remove or suppress the
X-Powered-By header from all
server responses..

Pending

4 Missing STS header Severity: Low
Without the
Strict-Transport-Security
header, browsers may not
enforce HTTPS, leaving
users vulnerable to
man-in-the-middle (MitM)
attacks.

Ensure the server includes a
Strict-Transport-Security
header in responses to
enforce secure connections.

Pending

hello@advix.com
advix.com

10. Version history

Version Date Changes

1.0 28.03.2025 The first version of the report has been published.

	
	
	
	
	
	
	1. Executive Summary
	2. Assessment Scope and Objectives
	
	3. Assessment Methodology
	
	4. SDK Code Summary
	
	5. Key Findings
	5.1 Cross-Domain Misconfiguration
	
	5.2 Information Leak via X-Powered-By Header
	
	5.3 Protocol Violation

	
	6. Solution Architecture Recommendations
	6.1. Implement End-to-End Encrypted Cloud Backup
	6.2. Distribute MPC Nodes Across Isolated Environments
	6.3. Decentralize Architecture to Uphold MPC Integrity

	
	7. Conclusion and Next Steps
	
	8. About Us
	Contact Information

	
	9. Appendix: Full List of Findings
	9.1. File: api/mpc/sign.ts
	
	9.2. File: classes/sign.ts
	
	9.3. File: types/mpc.ts
	
	9.4. File: api/mpc/keygen.ts
	
	9.5. File: classes/generate.ts
	
	9.6. File: api/mpc/reshare.ts
	
	9.7. Web App (dev.accounts.bitcoin.com)

	
	10. Version history

